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Clouds are composed of large numbers of (liquid or solid) particles, which in a 
standard approach are described by distributions of size or mass of particles. 
Similar concepts are used for aerosols (i.e. liquid or solid particles in air), 
where particle concentrations exhibit similar variations as in clouds, but where 
also chemical composition plays an important role. In general, the sought 
distribution function f depend on time t, on the spatial coordinate x, and on 
internal coordinates m = (m1,...,mN), that is, f = f(t,x,m). For 
instance,ifm1,...,mN correspondtothemassesofdifferenttypesofparticles,fisthe 
joint density of particles of a given mass at a particular time and spatial 
location. Its time evolution is described by Boltzmann-type equations of the 
form  

with the density ρ, the spatial flow field v and the displacements g in the 
internal coordinates (e.g., due to diffusive growth of particles).  
The source term K(f) on the right hand side describes formation and 
annihilation of particles due to different processes, as e.g. nucleation, 
evaporation or collision. A special but important case is the exclusive 
treatment of collision processes, neglecting all other processes, which could 
contribute to K(f). In case of only one internal coordinate m (that is, N = 1), 
such as mass or size of one type of particle, one arrives at a classical 
Smoluchovski coagulation equation, where  

 
with a collision kernel function C. Handling this equation numerically including 
the full spatial and temporal dependence is already a significant challenge, 
and one typically resorts to spatially homogeneous approximations and to 
very coarse piecewise constant approximations in m, so-called bin models 
that amount to considering only transitions between different categories of 
particles. The problem becomes more complex when several internal 
coordinates are involved, for instance in models for interaction of cloud 
droplets and aerosols. An important example is the scavenging of aerosols by 
cloud particles, which is relevant at very different cloud regimes (e.g. warm 
liquid clouds or even ice clouds at very high altitudes).  
The aim of the present project is to develop efficient numerical methods for 
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@t(⇢f) +rx · (⇢vf) +rm · (⇢gf) = K(f),
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with a collision kernel function C. Handling this equation numerically including the

full spatial and temporal dependence is already a significant challenge, and one typically

resorts to spatially homogeneous approximations and to very coarse piecewise constant

approximations in m, so-called bin models that amount to considering only transitions

between di↵erent categories of particles. The problem becomes more complex when

several internal coordinates are involved, for instance in models for interaction of cloud

droplets and aerosols. An important example is the scavenging of aerosols by cloud

particles, which is relevant at very di↵erent cloud regimes (e.g. warm liquid clouds or

even ice clouds at very high altitudes).

The aim of the present project is to develop e�cient numerical methods for problems of

this type, starting with the case of (⇤). The numerical analysis of this model already poses

some interesting challenges, especially due to the interaction of transport terms with a

nonlinear integral operator. We will follow two approaches: splitting methods treating the

di↵erent contributions in an alternating fashion, and unified weak formulations. In both

cases, standard discretizations of the integral operator K(f) lead to dense matrices. An

e�cient treatment can be achieved by sparse approximations with respect to suitable basis

functions. For handling a larger number of internal coordinates, special approximation

methods for higher-dimensional problems are required.
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problems of this type, starting with the case of (∗). The numerical analysis of 
this model already poses some interesting challenges, especially due to the 
interaction of transport terms with a nonlinear integral operator. We will follow 
two approaches: splitting methods treating the different contributions in an 
alternating fashion, and unified weak formulations. In both cases, standard 
discretizations of the integral operator K(f) lead to dense matrices. An efficient 
treatment can be achieved by sparse approximations with respect to suitable 
basis functions. For handling a larger number of internal coordinates, special 
approximation methods for higher-dimensional problems are required.  
Progress in this direction will have substantial impact in the numerical 
modeling of clouds, aerosols, and their interactions. The project offers to the 
PhD student the opportunity to familiarize themselves with the use of 
statistical physics concepts in cloud models, and at the same time with 
modern numerical techniques for higher-dimensional integro-differential 
equations. Finally, the model can be used for the interpretation of airborne 
measurements, which are available in collaboration with the “Aerosol and 
Cloud Physics group” (Prof. Borrmann/Dr. Weigel).  
 
 
 


